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On a combinatorial problem, Indag. Math. 10 (1948), 421--423

because it is a special case of a (far more general) theorem in  
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Question (Xiaomin Chen and V.C. 2006):

True or false? In every metric space on n points (n > 1),

there are at least n distinct lines or else

some line consists of all these n points.
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Observation

Line ab consists of                                                                                         

all points x such that dist(x,a)+dist(a,b)=dist(x,b), 

all points y such that dist(a,y)+dist(y,b)=dist(a,b), 

all points z such that dist(a,b)+dist(b,z)=dist(a,z).
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Theorem (Xiaomin Chen, Guangda Huzhang, Peihan Miao, 

Kuan Yang 2015 ):

In almost all graphs, no line is a proper superset of another.
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True in all (house, hole)-free graphs. 

True or false? In all connected graphs on n vertices (n > 1),

there are at least n distinct lines or else

some line consists of all these n vertices.

True in all (house, C5, P5)-free graphs?
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Each of K(3,3,4), K(1,3,3,3) and the complement of the 

Petersen graph has 15 lines.
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